Implementasi Algoritma Decision Tree C4.5 untuk Klasifikasi Pengangkatan Karyawan Tetap (Studi Kasus) di PT Intinusa Teknik Sejahtera)
DOI:
https://doi.org/10.31539/68x3rd85Abstract
This study aims to implement the Decision Tree C4.5 algorithm in the classification of permanent employee appointments at PT Intinusa Teknik Sejahtera to support more objective, accurate, and transparent decision-making. The research method used is a quantitative data mining-based approach with the CRISP-DM framework, using an employee dataset from the HRD department consisting of 16 attributes related to profile and performance. The modeling process was performed using RapidMiner Studio software using the split validation method with a ratio of 80% training data and 20% test data. The results show that the Decision Tree C4.5 classification model has an accuracy of 89.25%, with recall for the Contract class of 91.14% and the Permanent class of 78.57%, and precision for the Contract class of 96.00% and the Permanent class of 61.11%. The conclusions of this study confirm that the attributes of Performance, Attendance, Loyalty, and Tenure are the main factors in permanent employee appointments, and the C4.5 algorithm can be utilized as an HRD decision support system, although further method development is needed to improve precision for the Permanent class.
Keywords: Decision Tree C4.5, Classification, Permanent Employees, Human Resource Management
References
Azizah, A., Wulandari, R. S., & Prasetyo, S. (2024). Perbandingan algoritma C4.5 dan Naive Bayes untuk klasifikasi status pegawai dalam sistem e-kepegawaian. Jurnal Teknologi Kepegawaian, 18(3), 112–120.
Bertsimas, D., & Digalakis, V. Jr. (2023). Improving stability in decision tree models. arXiv preprint arXiv:2305.17299.
Fitriani, … & Wulandari, A. (2022). Penerapan algoritma C4.5 untuk memprediksi status pengangkatan karyawan tetap di sebuah perusahaan manufaktur. Jurnal Teknologi Industri, 12(3), 134–145.
Han, J., Kamber, M., & Pei, J. (2021). Data Mining: Concepts and Techniques
Kurniawan, B., & Santosa, D. (2019). Aplikasi decision tree dalam manajemen SDM
Lestari, D (2021). Penerapan algoritma C4.5 dalam prediksi kelulusan mahasiswa.
Prasetyo, E., & Nugroho, A. (2020). Penerapan Algoritma C4.5 untuk Prediksi Karyawan Kontrak Menjadi Karyawan Tetap pada Perusahaan XYZ. Jurnal Teknologi dan Sistem Informasi, 10(2), 123–130. https://doi.org/10.14710/jtsiskom.10.2.145-152
Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.
Rahman(2021). Integrasi analitik data dalam manajemen SDM.
Rahayu, D. (2021). Pengaruh masa kerja dan usia terhadap status kepegawaian di sektor ritel dengan menggunakan Decision Tree C4.5. Jurnal Sistem Informasi Bisnis, 10(2), 98–110.
Wahyudi, A. (2020). Penerapan algoritma Decision Tree C4.5 untuk menilai kelayakan promosi jabatan bagi pegawai pemerintahan. Jurnal Administrasi Publik, 8(1), 45–55.
Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical Machine Learning Tools and Techniques (4th ed.). Morgan Kaufmann.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Untung Suropati, Deny Saputra

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.