Volume 8 Nomor 6, Tahun 2025

e-ISSN: 2614-1574 p-ISSN: 2621-3249

KLASIFIKASI KINERJA PENGIRIMAN LOGISTIK BERBASIS PREDIKSI ETA MENGGUNAKAN MACHINE LEARNING DI PT. DE BESTA TRANS

LOGISTICS DELIVERY PERFORMANCE CLASSIFICATION BASED ON ETA PREDICTION USING MACHINE LEARNING AT PT. DE BESTA TRANS

Nathanael Dennis Gunawan¹, Jap Tji Beng^{1*}, Novario Jaya Perdana¹, Dhira Francesco¹, Dennis Matthew¹

Fakultas Teknologi Informasi, Program Studi Sarjana Sistem Informasi, Universitas Tarumanagara, Jakarta¹ t.jap@untar.ac.id*

ABSTRACT

Delivery time efficiency is the most important factor in maintaining logistics operational performance. Previously, PT. De Besta Trans already had an Estimated Time of Arrival (ETA) prediction model to estimate the delivery arrival time; however, until now, there has been no evaluation system that assesses the level of delivery accuracy. This study aims to develop a delivery performance classification model based on ETA prediction results using Machine Learning algorithms. The data used include ETA prediction results, arrival time, actual duration, and other variables such as route and driver. The methods used include data preprocessing, category label formation (clustering), and training of classification models using K-Nearest Neighbors, Random Forest, and Logistic Regression algorithms. The evaluation process is carried out using accuracy, precision, recall, and f1-score metrics. The results show that the Logistic Regression model demonstrates the best performance with an accuracy level of 99.76%. These results prove that the integration of ETA prediction with performance classification can improve the effectiveness of the logistics evaluation system more efficiently.

Keywords: Machine Learning, Estimated Time Of Arrival (ETA), Logistic Regression, Classification, Delivery Performance

ABSTRAK

Efisiensi waktu pengiriman adalah faktor terpenting dalam menjaga kinerja operasional logistik. Sebelumnya, PT. De Besta Trans sudah memiliki model prediksi *Estimated Time of Arrival (ETA)* untuk memperkirakan waktu tiba pengiriman, namun sampai sekarang masih belum terdapat sistem evaluasi yang menilai tingkat ketepatan pengiriman. Penelitian ini bertujuan untuk mengembangkan model klasifikasi kinerja pengiriman berbasis hasil prediksi *ETA* menggunakan algoritma *Machine Learning*. Data yang digunakan termasuk hasil prediksi *ETA*, waktu sampai, durasi aktual serta variabel lain seperti rute dan sopir. Metode yang digunakan meliputi *preprocessing* data, pembentukan label kategori (*clustering*), dan pelatihan model klasifikasi menggunakan algoritma *K-Nearest Neighbors, Random Forest* dan *Logistic Regression*. Proses evaluasi dilakukan dengan menggunakan metrik *accuracy, precision, recall*, dan *f1-score*. Hasil penelitian menunjukkan bahwa model *Logistic Regression* menunjukkan performa terbaik dengan tingkat akurasi sebesar 99,76%. Hasil tersebut membuktikan bahwa integrasi prediksi *ETA* dengan klasifikasi kinerja dapat meningkatkan efektivitas sistem evaluuasi logistik secara lebih efisien.

Kata Kunci: Machine Learning, Estimated Time of Arrival (ETA), Logistic Regression, Klasifikasi, Kinerja Pengiriman

PENDAHULUAN

Efisiensi waktu pengiriman adalah salah satu indikator utama dalam menjaga kualitas layanan dan kinerja operasional perusahaan logistik. Ketepatan waktu pengiriman barang berpengaruh langsung terhadap tingkat kepuasan pelanggan dan efektivitas rantai pasok, Dalam bisnis, baik jasa maupun perdagangan, hubungan antar pelanggan dan rantai pasok merupakan tahapan yang memiliki peran krusial.

Namun, banyak perusahaan logistik di Indonesia masih mengalami kesulitan atau kendala dalam memantau dan mengevaluasi performa pengiriman secara akurat karena belum adanya sistem yang terintegrasi antara data prediksi dan data realisasi pengiriman, (Judijanto et al., 2024; Leovin et al., 2020).

Berdasarkan hasil pengamatan dan diskusi dengan pihak perusahaan, proses evaluasi ketepatan waktu pengiriman masih cenderung bersifat manual dan belum menghasilkan informasi kinerja yang konsisten untuk setiap pengiriman. PT. De Besta Trans sebagai salah satu perusahaan penyedia layanan distribusi logistik, sebelumnya telah mengembangkan model Estimated Time of Arrival (ETA) untuk memperkirakan waktu tiba pengiriman kontainer (Balster et al., 2020). Walaupun demikian, pemanfaatan model ETA tersebut masih berfokus pada pemberian informasi estimasi kedatangan, belum terintegrasi dengan suatu sistem evaluasi yang secara otomatis mengelompokkan apakah pengiriman termasuk cepat, tepat waktu, atau terlambat. Hal ini membuat peluang pemanfaatan data prediksi pengiriman perbaikan kinerja pengiriman untuk menjadi tidak optimal.

Klasifikasi adalah salah satu teknik dalam data mining yang memetakan data ke dalam kelas yang telah ditentukan (Barito et al., 2022). Berbagai penelitian terdahulu menunjukkan bahwa dengan menggunakan algoritma Machine Learning, perusahaan mampu meningkatkan akurasi sistem prediksi dan klasifikasi dalam bidang logistik. Algoritma Random **Forest** memiliki kinerja lebih unggul dibanding Decision Tree dan Linear Regression dalam menangani data kompleks serta hubungan non-linier, sehingga membuat Random Forest lebih efektif digunakan untuk prediksi mendukung sistem manaiemen distribusi (Ichwani et al... 2025).

Peningkatan performa klasifikasi dapat dicapai melalui algoritma yang tepat, kualitas dataset, serta penerapan teknik ensemble seperti Random Forest dan REPTree, yang terbukti memberikan akurasi lebih tinggi dibanding metode tunggal (Baharuddin & Tjahyanto, 2022). Meskipun performa rata-rata model Machine Learning sebanding dengan Logistic Regression, algoritma lain seperti Random Forest dan Gradient Boosting dapat memberikan performa prediksi yang lebih tinggi dalam konteks klasifikasi (Song et al., 2021). Namun, sebagian besar penelitian tersebut lebih berfokus pada peningkatan akurasi model prediksi atau klasifikasi secara umum, sementara pemanfaatan hasil prediksi *ETA* yang sudah ada untuk membangun sistem klasifikasi kinerja pengiriman seperti ini masih relatif terbatas di Indonesia.

Penelitian bertujuan mengembangkan sistem klasifikasi kinerja pengiriman berbasis prediksi ETA untuk PT. De Besta Trans, menggunakan algoritma Machine Learning. klasifikasi bertujuan untuk memberikan label pada setiap data berdasarkan jenis kategori yang ditentukan (Andrew et al., 2024). Secara ringkas, penelitian ini untuk berfokus merumuskan semua pelabelan kinerja pengiriman ke dalam kategori cepat, tepat waktu, atau terlambat berdasarkan selisih antara prediksi ETA dengan waktu nyata kedatangan, serta membangun dan membandingkan beberapa model klasifikasi untuk menentukan model terbaik yang nantinya akan digunakan sebagai dasar evaluasi kinerja pengiriman pada PT. De Besta Trans.

Manfaat dari hasil penelitian ini juga sangat luas. Bagi perusahaan sendiri, penelitian ini memberikan sistem yang dapat memantau dan mengevaluasi performa pengiriman secara otomatis dan dapat membantu yang meningkatkan efisiensi operasional. Bagi akademisi, penelitian ini memperkaya wawasan tentang penerapan machine learning dalam konteks logistik serta pada memberikan kontribusi pengembangan sistem prediksi ETA dan klasifikasi kinerja pengiriman. Dengan demikian, penelitian ini diharapkan tidak hanya memberikan kontribusi teoritis, tetapi juga menawarkan solusi praktis bagi pengembangan sistem manajemen distribusi yang lebih canggih dan berbasis data-driven decision-making.

TINJAUAN PUSTAKA Kinerja Pengiriman Logistik

Kinerja pengiriman adalah salah satu dimensi utama dalam evaluasi layanan

logistik terutama terkait ketepatan waktu, dan keandalan, konsistensi distribusi. Ketepatan waktu sering diukur dari kesesuaian antara waktu kedatangan aktual dengan estimasi vang diinformasikan pelanggan. kepada Beberapa penelitian di bidang logistik mengkaji ketepatan waktu pengiriman dengan mengklasifikasikan setiap transaksi berdasarkan data historis (Pratama et al., 2025). Dalam penelitian ini kinerja pengiriman direpresentasikan dalam tiga kategori yaitu Cepat, Tepat Waktu, dan Terlambat.

Estimated Time of Arrival (ETA)

Estimated Time of Arrival (ETA) digunakan sebagai estimasi waktu kedatangan barang berdasarkan informasi rute, jadwal operasi, serta data historis perjalanan. Pada beberapa studi transportasi, ETA diprediksi menggunakan pendekatan data-driven dan machine learning untuk meningkatkan operasi rantai pasok (Noman et al., 2025).

Klasifikasi dan Machine Learning

Klasifikasi dalam data mining merupakan proses memetakan data dalam kelas tertentu berdasarkan pola yang dipelajari dari data historis. Berbagai penelitian menunjukkan bahwa algoritma machine learning mampu memberikan performa yang baik dalam klasifikasi ketepatan waktu pengiriman prediksi keterlambatan (Banjanin et al., 2025). Hasil tersebut memperkuat bahwa algoritma klasifikasi machine learning relevan untuk dikembangkan sebagai dasar sistem evaluasi kinerja pengiriman.

Hubungan Antar Variabel Berdasarkan Teori dan Penelitian Terdahulu

Selisih waktu antara prediksi *ETA* dan waktu kedatangan aktual berhubungan langsung dengan kategori kinerja pengiriman. Selisih waktu yang kecil biasanya menghasilkan klasifikasi "Cepat" atau "Tepat Waktu", sedangkan selisih yang besar menghasilkan "Terlambat".

Pendekatan ini telah digunakan dalam penelitian yang memprediksi keterlambatan pengiriman dan menilai ketepatan waktu dari estimasi yang direncanakan (Wahyudi & Arroufu, 2022).

Algoritma klasifikasi learning memanfaatkan fitur yang berkaitan dengan perjalanan dan untuk memprediksi pengiriman kelas kinerja pengiriman. Hasil klasifikasi nantinya dapat digunakan sebagai dasar kinerja perbaikan proses pemantauan maupun pengambilan operasional keputusan manajerial (Banjanin et al., 2025).

Hipotesis Penelitian

Hipotesis dapat dirumuskan berdasarkan uraian teori dan temuan penelitian terdahulu antara lain:

H1: Selisih antara prediksi *ETA* dan waktu aktual dapat digunakan sebagai dasar untuk mengklasifikasikan kinerja pengiriman ke dalam kategori cepat, tepat waktu, dan terlambat dengan akurasi yang memadai.

H2: Di antara algoritma *K-Nearest Neighbors (KNN), Random Forest*, dan *Logistic Regression*, terdapat minimal satu algoritma yang menunjukkan klasifikasi paling tinggi dan layak dijadikan model utama untuk evaluasi kinerja pengiriman pada PT De Besta Trans.

Kerangka Berpikir

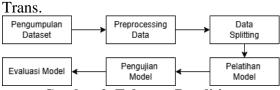
Kerangka berpikir ini menggambarkan alur hubungan antara data pengiriman, prediksi *ETA*, perhitungan selisih waktu, pelabelan kinerja, dan proses klasifikasi. Gambar 1 menampilkan kerangka berpikir dalam bentuk bagan alur.

Gambar 1. Kerangka Berpikir Sumber : Dokumentasi Pribadi

Data pengiriman logistik dari sistem operasional dikumpulkan perusahaan. Dari data tersebut dihitung selisih antara prediksi ETA dengan waktu aktual yang kemudian digunakan untuk menyusun label kinerja. Fitur-fitur yang relevan beserta label kinerja digunakan sebagai data pelatihan untuk membangun model klasifikasi KNN, Random Forest, dan Logistic Regression. Model yang dihasilkan digunakan untuk klasifikasi kinerja pengiriman pada data baru sehingga perusahaan dapat mengevaluasi kinerja pengiriman secara konsisten dan berbasis data.

METODE

Pada bab ini, dijelaskan suatu metode penelitian yang jelas agar dapat dilaksanakan dengan terarah. Gambar 2 menampilkan tahapan yang dilakukan dalam penelitian ini secara keseluruhan. Penelitian ini menggunakan pendekatan kuantitatif dengan desain studi pemodelan klasifikasi berbasis data sekunder pengiriman logistik pada PT. De Besta



Gambar 2. Tahapan Penelitian Sumber : Dokumentasi Pribadi

Populasi dan Sampel Penelitian

Populasi dalam penelitian ini adalah seluruh data pengiriman kontainer yang tercatat pada sistem operasional PT. De Besta Trans pada periode dua tahun. Sampel penelitian yang diperoleh hanya yang memeuhi kriteria kelengkapan atribut yang diikutsertakan dalam analisis. Setelah proses pembersihan data, diperoleh sebanyak 9070 baris data pengiriman yang digunakan dalam dataset utama penelitian.

Pengumpulan Dataset

Penelitian dimulai dengan memahami dengan jelas masalah yang hendak diselesaikan, karena hal ini merupakan hal yang sangat penting terutama ketika berhadapan dengan data yang kompleks (Nawawi et al., 2024). Lalu dilakukan pengumpulan data yang akan dijadikan objek penelitian. Data ini diperoleh langsung dari PT. De Besta Trans dan akan menjadi dasar untuk proses pengolahan serta analisis lanjutan. Dataset berisi informasi mengenai pengiriman logistik dan akan dikelompokkan berdasarkan kategori kinerja pengiriman yaitu Cepat, Tepat Waktu, dan Terlambat. Data ini kemudian digunakan untuk membangun model klasifikasi dalam penelitian ini.

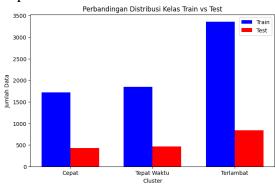
Preprocessing Data

Tahap pra-pemrosesan data atau preprocessing memegang peran vang sangat penting dalam mempersiapkan data untuk proses selanjutnya (Afiasari et al., 2023). Tujuan dari tahap ini adalah untuk memastikan bahwa data yang diproses sudah tidak mengandung informasi yang kosong atau null. Setelah data sudah terkumpul, selanjutnya dilakukan beberapa langkah penting untuk mempersiapkan data agar siap digunakan saat melatih model, karena Pengelolaan data yang efektif dibutuhkan untuk merespons perubahan dengan cepat (Hutagaol et al., 2024). Pertama, dilakukan encoding pada data kategorikal seperti label Cepat, Tepat Waktu, dan Terlambat yang diubah menjadi numerik menggunakan label encoding. Lalu dilakukan normalisasi menggunakan metode Min-Max Scaling agar skala fitur seragam. Terakhir, data dipisah menjadi fitur (x) dan target (y) yang akan digunakan untuk melatih model.

Data Splitting

Pada tahap ini dilakukan pembagian dataset menjadi dua bagian yaitu data latih (training) dan data uji (testing). Data latih digunakan untuk melatih model agar mampu mengenali pola pada data, sementara data uji digunakan untuk mengevaluasi performa model terhadap data baru. Rasio pembagian data serta metode pembagiannya juga berdampak pada performa dan validitas model yang

dihasilkan (Muraina, 2022). Pada penelitian ini, pembagian data dilakukan dengan proporsi 80% data latih dan 20% data uji. Pembagian data dilakukan secara acak dengan mempertahankan proporsi tiap kelas sehingga distribusi kelas Cepat, Tepat Waktu, dan Terlambat pada data latih dan data uji tetap seimbang. Gambar 3 menampilkan perbandingan distribusi pada tiap kelas.



Gambar 3. Perbandingan Distribusi Kelas Sumber : Dokumentasi Pribadi

Instrumen Penelitian

Instrumen utama dalam penelitian ini terdapat beberapa yaitu: (1) dataset historis pengiriman kontainer yang diperoleh dari pihak perusahaan sebagai sumber data. (2) perangkat keras berupa komputer/laptop yang digunakan untuk proses mengolah data, serta (3) perangkat lunak berupa bahasa pemrograman Python dan pustaka Machine Learning untuk melakukan preprocessing, pembagian data, pelatihan, pengujian, dan evaluasi model. Reliabilitas instrumen dijaga dengan menerapkan prosedur pengolahan data yang konsisten seluruh tahapan, menggunakan pada konfigurasi parameter dan random state yang sama pada tiap percobaan.

Pemilihan Model

Pada analisis ini, beberapa model klasifikasi sudah diuji untuk memprediksi kinerja pengiriman berdasarkan dataset penelitian. Model yang berhasil dianalisis antara lain *K-Nearest Neighbors, Random Forest,* dan *Logistic Regression*. Model tersebut dipilih atas dasar pada kemampuannya untuk menangani data

dengan berbagai karakteristik serta kemampuannya untuk mengklasifikasikan kelas

K-Nearest Neighbor adalah algoritma klasifikasi data yang sederhana. Klasifikasi suatu kasus baru dilakukan dengan mengukur jarak terpendek antara data tersebut dengan data yang sudah ada berdasarkan dengan tingkat kemiripan (Diansyah, 2022). Esensi dari KNN adalah untuk menentukan kedekatan suatu informasi dengan k tetangga yang terdekat dalam dataset pelatihan yang berguna untuk menilai dan memprediksi kelas data tersebut.

Random Forest adalah metode yang membangun banyak pohon keputusan dengan menggabungkan berbagai elemen seperti root node, internal node, dan leaf node. Dalam proses pembentukannya, atribut dan data dipilih secara acak berdasarkan aturan tertentu (Sihombing & Yuliati, 2021).

Logistic Regression adalah sebuah model matematika yang menggambarkan hubungan antara beberapa variabel X dengan variabel D yang merupakan variabel bersifat dependent dichotomous (Darmaja et al., 2021).

Pelatihan Model

Pada tahap ini, model klasifikasi dilatih menggunakan data latih (x_train , telah dipersiapkan y_train) yang sebelumnya. Proses pelatihan ini dilakukan dengan menggunakan tiga algoritma klasifikasi, yaitu K-Nearest Neighbors (KNN), Random Forest (RF), dan Logistic Regression (LR). Tiap model dilatih dengan parameter yang sesuai dan kemudian dilatih dengan data latih. Pelatihan ini berguna untuk membangun model agar dapat menggeneralisasi pola dari data yang telah diberikan, sehingga bisa menghasilkan prediksi yang akurat. Penentuan parameter awal mengacu pada literatur serta beberapa percobaan awal untuk memperoleh kombinasi parameter yang stabil.

Pengujian Model

Setelah model dilatih, ketiga model tersebut diuji untuk mengevaluasi kinerjanya menggunakan data uji (X test, $y_test)$. Lalu dilakukan penyetelan hiperparameter (tuning) untuk mencari kombinasi parameter terbaik bagi tiap model yang berguna untuk meningkatkan performa dan akurasi. Proses pengujian ini menghasilkan nilai prediksi kelas kinerja pengiriman yang kemudian dibandingkan dengan label sebenarnya pada data uji (testing).

Evaluasi Model

Model yang telah dilatih dan diuji akan dievaluasi berdasarkan beberapa metrik yaitu accuracy, precision, recall, dan flscore. Hasil evaluasi berguna untuk membandingkan kinerja masing-masing model dan menentukan model terbaik yang dapat digunakan untuk aplikasi di dunia Proses evaluasi nvata. iuga menampilkan Confusion matrix. Confusion matrix adalah sebuah tabel yang digunakan untuk menunjukkan jumlah data uji yang berhasil diklasifikasikan dengan benar dan jumlah data uji yang salah dalam proses klasifikasi (Normawati & Prayogi, 2021) . Nilai akurasi, precision, recall, f1-score, serta pola kesalahan pada *confusion matrix* digunakan sebagai dasar untuk menguji hipotesis penelitian. Hipotesis pertama dianggap terpenuhi apabila selisih antara prediksi ETA dan data aktual kedatangan terbukti dapat digunakan untuk membentuk model klasifikasi kinerja pengiriman. **Hipotesis** kedua diuji dengan membandingkan nilai metrik evaluasi ketiga algoritma sehingga model dengan kinerja terbaik dapat ditetapkan sebagai model utama.

Prosedur Analisis Data

Secara keseluruhan, proses analisis data dalam penelitian ini meliputi (1) penentuan populasi dan pemilihan sampel data, (2) pengumpulan dataset, (3) preprocessing data seperti pembersihan data, encoding label, dan normalisasi fitur,

(4) pembagian data menjadi data latih dan uji sebanyak 80:20, (5) pemilihan dan pelatihan model klasifikasi, (6) pengujian model menggunakan data uji, (7) evaluasi model menggunakan metrik evaluasi. Analisis ini dilakukan dengan membandingkan nilai metrik evaluasi antar model untuk menentukan algoritma dengan kinerja terbaik sebagai dasar rekomendasi model klasifikasi kinerja pengiriman pada PT. De Besta Trans.

HASIL DAN PEMBAHASAN

Pada bagian ini akan menyajikan serta membahas temuan utama penelitian yang diperoleh dari proses pengujian tiga model klasifikasi utama, yaitu K-Nearest Neighbors (KNN), Random Forest (RF), dan Logistic Regression (LR), yang digunakan untuk mengklasifikasikan kinerja pengiriman logistik berbasis prediksi ETA.

Analisis ini dilakukan dengan tujuan untuk mengevalusasi tingkat akurasi dan algoritma efektivitas setiap dalam memprediksi kategori kinerja pengiriman, yaitu Cepat, Tepat Waktu, dan terlambat. dilakukan Evaluasi dengan membandingkan sejumlah metrik performa yaitu accuracy, precision, recall, dan flscore, baik secara keseluruhan maupun per kelas. Selain itu, pada bagian ini juga akan memaparkan langkah pengujian, prasyarat analisis, serta keterkaitan hasil dengan hipotesis penelitian.

Gambaran Umum Hasil Penelitian

Penelitian ini dilakukan evaluasi tiga algoritma klasifikasi untuk memetakan kinerja pengiriman logistik berbasis prediksi ETA di PT. De Besta Trans. Model digunakan, vakni K-Nearest Neighbors (KNN), Random Forest (RF), dan Logistic Regression (LR). Evaluasi dilakukan pada data uji yang berjumlah 1.726 observasi dengan tiga label kelas yaitu Cepat (n = 427), Tepat Waktu (n = 460), dan Terlambat (n = 839). Pengukuran kinerja menggunakan metrik Accuracy, Precision, Recall, dan F1-Score. Selain itu, ditampilkan juga classification report dan confusion matrix untuk tiap model. Penelitian ini juga dilakukan dalam dua tahap yaitu sebelum tuning dan setelah tuning untuk mendapat nilai akurasi terbaik. Hipotesis yang diuji adalah H1 mengenai kemampuan data berbasis selisih antara ETA dan data aktual untuk membangun model klasifikasi kinerja pengiriman yang andal, serta H2 mengenai adanya satu model dengan performa klasifikasi terbaik di antara KNN, Random Forest, dan Logistic Regression.

Uji Prasyarat Analisis

Sebelum proses pemodelan, dilakukan uji prasyarat analisis terhadap data. Pertama, distribusi kelas diperiksa untuk memastikan tidak terjadi ketidakseimbangan yang ekstrem pada proporsi kelas Cepat, Tepat Waktu, dan Terlambat. Kedua, hubungan antar fitur numerik dianalisis melalui matriks korelasi dan nilai variance inflation factor (VIF) dan tidak ditemukan indikasi multikolinearitas yang berat sehingga variabel prediktor

dapat digunakan secara bersamaan dalam model. Ketiga, pemeriksaan pola sebaran residual dan probabilitas keluaran model menunjukkan tidak adanya gejala yang menggangu secara signifikan. Hasil uji prasyarat ini menunjukkan bahwa data layak digunakan untuk analisis klasifikasi dan pengujian hipotesis.

Modeling

Tahapan ini adalah tahapan paling penting dalam klasifikasi. Secara bertahap, pemodelan dilakukan dengan menjalankan ketiga model menggunakan parameter bawaan untuk memperoleh gambaran awal performa, membandingkan metrik evaluasi awal, dan melakukan hiperparameter penyetelan (hyperparameter tuning) pada model yang diuji. Pertama-tama tiap model akan diuji menggunakan paraeter default terlebih dahulu untuk memperoleh gambaran awal terhadap data pengiriman. **Tabel** menjelaskan hasil dari performa ketiga model dengan rinci.

Tabel 1. Performa Model Klasifikasi Sebelum Tuning

No	Model	Accuracy	Precision	Recall	F1- Score
1	K-Nearest Neighbors	0.9213	0.9202	0.9213	0.9194
2	Random Forest	0.9826	0.9826	0.9826	0.9826
3	Logistic Regression	0.9901	0.9902	0.9901	0.9901

Sumber: Dokumentasi Pribadi

Berdasarkan hasil pada Tabel 1, dapat dilihat bahwa model Logistic Regression memberikan nilai akurasi tertinggi sebesar 0.9901, diikuti dengan Random Forest sebesar 0.9826, dan KNN sebesar 0.9213. Nilai tersebut sudah menunjukkan bahwa ketiga model sudah memiliki performa yang baik walaupun tanpa penyesuaian parameter tetapi tidak menutup kemungkinan untuk meningkatkan performa lagi terutama pada model K-Nearest Neighbors.

Setelah dilakukan pengujian awal, dilakukan proses penyetelan hiperparameter (hyperparameter tuning) untuk mengoptimalkan kinerja tiap model. Untuk model K-Nearest Neighbors (KNN),

parameter yang disesuaikan meliputi metric=manhattan, n_neighbors=9, dan weights=distance. Model Random Forest (RF) mencapai konfigurasi optimal pada n_estimators=200, max_depth=None, min_samples_split=2, dan min_samples_leaf=1. Sedangkan Logistic Regression (LR) menunjukkan performa tinggi dengan parameter c=100, penalty'12', dan solver='lbfgs'. Tabel 2 menampilkan performa model setelah dilakukan tahap tuning.

Tabel 2. Performa Model Klasifikasi Setelah Tuning

No	Model	Accuracy	Precision	Recall	F1-Score
1	K-Nearest	0.9312	0.9302	0.9312	0.9300
	Neighbors				
2	Random Forest	0.9855	0.9855	0.9855	0.9855
3	Logistic	0.9976	0.9976	0.9976	0.9976
	Regression				

Sumber: Dokumentasi Pribadi

Dari performa tersebut, dapat dilihat bahwa terjadi peningkatan performa pada seluruh model. Model *KNN* mengalami kenaikan akurasi dari 0.9213 menjadi 0.9312, hal ini menunjukkan bahwa pemilihan nilai *k* dan metrik jarak yang optimal berpengaruh terhadap hasil klasifikasi dengan signifikan.

Model *Random Forest* juga mengalami peningkatan dari 0.9826 menjadi 0.9855, hal ini juga menunjukkan bahwa jumlah pohon dan kedalaman optimal mampu memperbaiki stabilitas prediksi tanpa menimbulkan *overfitting*.

Terakhir, Logistic Regression menunjukkan hasil paling tinggi dibanding model lain dengan akurasi meningkat dari sebelumnya 0.9901 menjadi 0.9976, nilai precision, recall, dan f1-score juga menghasilkan nilai identik yang

menandakan bahwa model ini bekerja sangat konsisten untuk tiap kelas.

Hasil Klasifikasi Model Terbaik

Berdasarkan hasil dari pengujian tersebut, model Logistic Regression dipilih model terbaik dikarenakan sebagai memiliki nilai accuracy, precision, recall, dan f1-score tertinggi dibandingkan K-Nearest Neighbors dan Random Forest. Model ini menujukkan kemampuan yang sangat baik dalam mengenali pola data pengiriman logistik mengklasifikasikan kinerja pengiriman secara konsisten pada ketiga kategori yaitu Cepat, Tepat Waktu, dan Terlambat. Untuk menilai performa model dengan lebih rinci, Tabel 3 menampilkan classification report yang memuat hasil pengukuran tiap metrik terhadap masing-masing kelas.

Tabel 3. Classification Report Logistic Regression

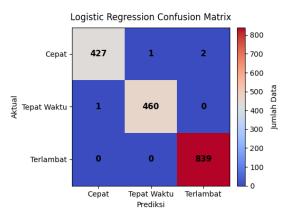
	Tuber 5. Classification Report Englishe Regression				
No	Metrik	Cepat	Tepat	Terlambat	
			Waktu		
1	Precision	1.00	1.00	1.00	
2	Recall	0.99	1.00	1.00	
3	F1-score	1.00	1.00	1.00	
4	Support	430	461	839	
5	Accuracy	1.00	_	_	

Sumber: Dokumentasi Pribadi

Model menampilkan performa sempurna dengan nilai *accuracy* dan *f1-score* sebesar 1.00, menandakan bahwa model mampu mengklasifikasikan seluruh kelas dengan sangat akurat tanpa kesalahan prediksi yang signifikan. Hasil ini menunjukkan bahwa *Logistic Regression* menjadi model dengan performa paling tinggi di antara ketiga algoritma yang diuji, sehingga hipotesis H2 yang berisi adanya satu model terbaik yang dapat diterima mampu terbukti.

Confusion Matrix Model Terbaik

Setelah melihat hasil pada Tabel 3, Logistic Regression (LR) menampilkan performa terbaik di antara model klasifikasi lainnya yang diuji dalam penelitian ini. Untuk lebih memahami bagaimana model ini bekerja dalam mengklasifikasikan data prediksi pengiriman, Gambar 3 menyajikan confusion matrix dari model Logistic Regression



Gambar 3. Confusion Matrix Logistic Regression

Sumber: Dokumentasi Pribadi

Dari confusion matrix tersebut, ditampilkan bahwa model sangat efektif dalam mengklasifikasi setiap kategori pengiriman. Pada kelas Cepat, model berhasil mengklasifikasikan 427 dengan benar, sementara hanya 1 data yang salah diklasifikasikan sebagai Tepat Waktu dan 2 data sebagai Terlambat. Pada kelas model **Tepat** Waktu, mampu mengklasifikasikan 460 data dengan benar, hanya terdapat 1 data yang diklasifikasikan sebagai Cepat. Pada kelas Terlambat, model berhasil mengklasifikasi 839 data dengan tepat tanpa adanya kesalahan.

Hasil ini menjelaskan bahwa model Logistic Regression memiliki kemampuan yang sangat baik dalam memisahkan pengiriman dengan kategori jumlah kesalahan yang minim. Akan tetapi, kesalahan sedikit lebih banyak pada kelas mungkin diakibatkan Cepat ketidakseimbangan distribusi data antara kelas Cepat dan Tepat Waktu. Secara keseluruhan, model ini menunjukkan performa yang sangat baik, menjadikannya model yang cocok untuk digunakan dalam sistem prediksi ETA pada PT. De Besta Trans.

Pembahasan

Secara teoritis, *Logistic Regression* sesuai untuk kasus klasifikasi ketika hubungan antara fitur dan probabilitas kelas bersifat relatih linier setelah dilakukan transformasi dan normalisasi data. Hal ini

sejalan dengan karakteristik dataset yang digunakan, di mana fitur-fitur berkaitan erat dengan selisih waktu pengiriman sehingga batas pemisah antar kelas cenderung linier. Kondisi tersebut menjelaskan mengapa *Logistic Regression* mampu memberikan kinerja yang lebih tinggi dibanding *KNN* yang sensitif terhadap pemilihan jarak dan jumlah tetangga, maupun *Random Forest* yang cenderung membentuk batas keputusan yang lebih kompleks.

Dari sisi lapangan, pola pengiriman di PT. De Besta Trans relatif konsisten karena prosedur operasional, rute, dan jadwal keberangkatan sudah baku. Hal membuat hubungan antara selisih ETAaktual dan kelas kinerja menjadi lebih terstruktur yang membuat model yang berbasis fungsi logistik dapat mempelajari pola tersebut dengan baik. Temuan bahwa Logistic Regression cukup untuk mencapai kinerja yang sangat tinggi ini juga memiliki implikasi praktis karena model ini lebih mudah diimplementasikan dan dijelaskan pemangku kepentingan kepada dibandingkan dengan model lainnya yang lebih kompleks.

Jika dibandingkan dengan penelitian terdahulu, kebanyakan melaporkan bahwa algoritma machine learning seperti Random Forest atau metode ensemble lain sering memberikan akurasi tinggi dalam klasifikasi ketepatan waktu pengiriman, hasil penelitian ini menunjukkan bahwa model vang lebih sederhana seperti *Logistic* Regression juga dapat bersaing dan bahkan melampaui model lain apabila struktur data yang digunakan mendukung. Jumlah fitur yang tidak terlalu banyak, korelasi yang terkontrol, serta pola hubungan yang relatif linier antar variabel prediktor dan kelas kinerja pengiriman menjadi perbedaan karakteristik dataset yang digunakan. Dengan begitu, temuan penelitian ini melengkapi studi sebelumnya dengan menunjukkan bahwa pemilihan model terbaik sangat bergantung pada sifat data dan konteks operasional, bukan hanya pada kompleksitas algoritma yang digunakan.

SIMPULAN

- 1. Penelitian ini berhasil mengembangkan sistem prediksi kinerja pengiriman logistik berbasis estimasi waktu kedatangan (ETA) dengan menggunakan tiga algoritma klasifikasi, yakni K-Nearest Neighbors (KNN), Random Forest (RF), dan Logistic Regression (LR). Di antara ketiganya, Logistic Regression menjadi model terbaik dengan akurasi 99,76% serta nilai precision, recall, dan fl-score yang sangat tinggi. Hal ini membuat model Logistic Regression layak dijadikan model utama untuk evaluasi kinerja pengiriman pada PT. De Besta Trans.
- 2. Penyetelan hiperparameter (hyperparameter tuning) terbukti meningkatkan kinerja seluruh model, terutama KNN dan Random Forest, namun hal tersebut tidak mengubah fakta bahwa Logistic Regression tetap unggul stabil dan dalam mengklasifikasikan ketiga kategori kinerja yaitu Cepat, Tepat Waktu, dan Terlambat.
- 3. Model klasifikasi yang dihasilkan berpotensi digunakan sebagai alat bantu evaluasi kinerja pengiriman yang lebih objektif dan terukur, sehingga dapat mendukung pengambilan keputusan operasional dan perbaikan proses distribusi di PT. De Besta Trans.

SARAN

- 1. Saran praktis bagi PT. De Besta Trans, perusahaan disarankan untuk mengintegrasikan model *Logistic Regression* ke dalam sistem operasional pengiriman sebagai modul evaluasi kinerja berbasis data. Selain itu, perlu dilakukan pemantauan berkala terhadap performa model dan pembaruan data pelatihan agar akurasi tetap terjaga seiring perubahan pola operasional.
- 2. Saran bagi penelitian lanjutan, untuk penelitian selanjutnya, dapat menambahkan variabel fitur lain seperti kondisi cuaca, kepadatan lalu lintas, jenis rute, atau karakteristik pelanggan.

Hal itu dilakukan untuk menguji apakah performa model dapat semakin ditingkatkan. Selain itu, dapat dilakukan komparasi dengan model *deep learning* atau pendekatan lain (seperti *LSTM* atau *gradient boosting*) serta pengujian pada konteks perusahaan logistik berbeda untuk melihat generalisasi model.

DAFTAR PUSTAKA

- Afiasari, N., Suarna, N., & Rahaningsi, N. (2023). Implementasi Data Mining Transaksi Penjualan Menggunakan Algoritma Clustering dengan Metode K-Means. *Jurnal SAINTEKOM*, 13(1), 100–110. https://doi.org/10.33020/saintekom.v 13i1.402
- Andrew, N., Christanti Mawardi, V., & Jaya Perdana, N. (2024). Implementasi metode Word2Vec dan TextRank dalam Aplikasi Mobile Peringkas Berita Olahraga. *Jurnal Ilmu Komputer dan Sistem Informasi,* 12(2), 1-6. https://doi.org/10.24912/jiksi.v12i2.3 1561
- Baharuddin, F., & Tjahyanto, A. (2022).

 Peningkatan Performa Klasifikasi
 Machine Learning Melalui
 Perbandingan Metode Machine
 Learning dan Peningkatan Dataset.

 Jurnal Sisfokom (Sistem Informasi
 Dan Komputer), 11(1), 25–31.

 https://doi.org/10.32736/sisfokom.v1
 1i1.1337
- Balster, A., Hansen, O., Friedrich, H., & Ludwig, A. (2020). An ETA Prediction Model for Intermodal Transport Networks Based on Machine Learning. Business and Information Systems Engineering, 62(5), 403–416. https://doi.org/10.1007/s12599-020-00653-0
- Banjanin, M. K., Stojčić, M., Popović, Đ., Anđelković, D., Jauševac, G., & Husić, M. (2025). Classification Machine Learning Models for Enhancing the Sustainability of

- Postal System Modules Within the Smart Transportation Concept. *Sustainability*, *17*(19), 8718. https://doi.org/10.3390/su17198718
- Barito, E. E., Beng, J. T., & Arisandi, D. (2022). Penerapan Algoritma C4. 5 Untuk Klasifikasi Mahasiswa Penerima Bantuan Sosial Covid-19. *Jurnal Ilmu Komputer dan Sistem Informasi*, 10(1), 1-9. https://doi.org/10.24912/jiksi.v10i1.1 7819
- Darmaja, E., Mawardi, V. C., & Perdana, N. J. (2021). Review Sentimen Analisis Aplikasi Sosial Media Di Google Playstore Menggunakan Metode Logistic Regression. *Prosiding Serina*, 1(1), 513-520. https://doi.org/10.24912/pserina.v1i1 .17504
- Diansyah, S. (2022). Klasifikasi Tingkat Kepuasan Pengguna dengan Menggunakan Metode K-Nearest Neighbour (KNN). *Jurnal Sistim Informasi Dan Teknologi*, 4(1), 7–12. https://doi.org/10.37034/jsisfotek.v4i 1.114
- Hutagaol, A. S., Samantha, V., Salsabila, T. M., Wasino, W., & Beng, J. T. (2024).Perancangan Dashboard Monitoring Untuk Monthly Report Pemesanan Hotel dengan Microsoft Power BI. Jutisi: Jurnal Ilmiah Informatika Teknik dan Sistem Informasi. 13(3). 2078-2089. 10.35889/jutisi.v13i3.2379
- Ichwani, A., Irawan, E., Saputro, L. W. A., Pradana, G. P., & Maulindar, J. *Implementasi* algoritma (2025).**Forest** untuk prediksi Random permintaan dan optimasi stok pada sistem manajemen inventori layanan pengiriman makanan. In Prosiding Seminar Nasional Teknologi Informasi dan Bisnis (SENATIB) 2025 1-7). (pp. https://doi.org/10.47701/e99md674.
- Judijanto, L., Asniar, N., Utami, E. Y., & Telaumbanua, E. (2024). Application of integrated logistics networks in

- improving the efficiency of distribution and delivery of goods in Indonesia: A literature review. *Sciences du Nord: Economics and Business*, 1(1), 1-10. https://doi.org/10.58812/sneb.v1i1.6
- Leovin, A., Beng, J. T., & Dewayani, E. (2020, December). Business to business e-commerce sales system using web-based quotation: A case study on company X. In *IOP Conference Series: Materials Science and Engineering* (Vol. 1007, No. 1, Article 012156). IOP Publishing. https://doi.org/10.1088/1757-899X/1007/1/012156
- Muraina, I. O. (2022). Ideal dataset splitting ratios in machine learning algorithms: General concerns for data scientists and data analysts. Paper presented at the 7th International Mardin Artuklu Scientific Researches Conference, Mardin, Turkey
- Nawawi, H. M., Hikmah, A. B., Mustopa, A., & Wijaya, G. (2024). Model klasifikasi machine learning untuk prediksi ketepatan penempatan karir. *Jurnal Saintekom: Sains, Teknologi, Komputer dan Manajemen, 14*(1), 13–25.
 - https://doi.org/10.53524/saintekom.v 14i1.2113
- Noman, A. Al., Heuermann, A., Wiesner, S., & Thoben, K. D. (2025). A review of vessel time of arrival prediction on waterway networks: Current trends, open issues, and future directions. *Computers*, 14(2), Article 41. https://doi.org/10.3390/computers14 020041
- Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes classifier dan confusion matrix pada analisis sentimen berbasis teks pada Twitter. *Jurnal Sains Komputer dan Informatika (J-SAKTI)*, *5*(2), 122–130. https://doi.org/10.30645/j-sakti.v5i2.332.
- Pratama, N., Anrahvi, R., Tambal, A., & Singh, A. (2025). Classification of e-

- commerce shipping timeliness using supervised learning algorithm. *Public Research Journal of Engineering, Data Technology and Computer Science,* 3(1), 59–69. https://doi.org/10.57152/predatecs.v 3i1.1855
- Sihombing, P. R., & Yuliati, I. F. (2021).

 Penerapan metode machine learning dalam klasifikasi risiko kejadian berat badan lahir rendah di Indonesia.

 MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 20(2), 417–426. https://doi.org/10.30812/matrik.v20i 2.1174
- Song, X., Liu, X., Liu, F., & Wang, C. (2021). Comparison of machine learning and logistic regression models in predicting acute kidney injury: A systematic review and meta-analysis. *International Journal of Medical Informatics*, 151, Article 104484.

https://doi.org/10.1016/j.ijmedinf.20 21.104484

Wahyudi, T., & Arroufu, D. S. (2022). Implementation of data mining prediction delivery time using linear regression algorithm. *Journal of Applied Engineering and Technological Science (JAETS)*, 4(1), 84–92.

https://doi.org/10.37385/jaets.v4i1.5