Journal of Information Technology and Computer Science (INTECOMS)

Volume 8 Nomor 6, Tahun 2025

e-ISSN: 2614-1574 p-ISSN: 2621-3249

ANALISIS PENGENDALIAN PRODUK PUPUK DOMESTIK DAN EKSPOR MENGGUNAKAN METODE SEVEN TOOLS DAN FMEA PADA PT.XYZ

ANALYSIS OF QUALITY CONTROL IN DOMESTIC AND EXPORT FERTILIZER PRODUCTS USING SEVEN TOOLS AND FAILURE MODE AND EFFECT ANALYSIS (FMEA) AT PT. XYZ

Fakhrur Rozi¹, Deny Andesta²

Program Studi Teknik Industri, Fakultas Teknik, Universitas Muhammadiyah Gresik^{1,2} Fr.roziii@gmail.com¹

ABSTRACT

As one of the most comprehensive fertilizer producers in Indonesia, PT. XYZ faces challenges in maintaining product quality to meet the demands of both domestic and export markets. Although the company is strongly committed to high quality standards, variations in the production process occasionally leads to product defects. This study aims to identify and improve the quality of fertilizer products for both domestic and export markets. The research employs the Seven Tools method to identify the causes of defects in the production process, while Failure Mode and Effect Analysis (FMEA) is applied to propose corrective actions. Based on production data from April to August, the total output reached 249.845 tons with a total of 3.462 tons of defective products. The dominant defects included unidentified product analysis (1863 tons), non-uniform granules (1.511 tons), and color not meeting specifications (88 tons). Control chart (P-chart) analysis indicated that the defect rate in June exceeded the upper control limit. The FMEA results showed the highest Risk Priority Number (RPN) of 336 in the failure mode of unidentified product analysis, caused by the transition from domestic to export product specifications. These findings provide guidance for fertilizer manufacturers to strengthen production process supervision and quality control systems in order to reduce defect rates and maintain consistent product quality in accordance with domestic and export standards.

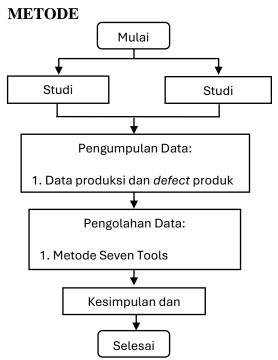
Keywords: Quality, Seven Tools, FMEA

ABSTRAK

Sebagai salah satu produsen pupuk terlengkap di Indonesia PT.XZY menghadapi tantangan dalam menjaga kualitas produknya untuk memenuhi kebutuhan pasar domestik dan ekspor. Perusahaan mempunyai komitmen terhadap kualitas yang tinggi namun variasi dalam proses produksi terkadang mengakibatkan cacat produk. Penelitian ini bertujuan untuk mengidentifikasi dan memperbaiki kualitas produk pupuk baik domestik maupun ekspor. Penelitian ini menggunakan metode Seven Tools untuk mengidentifikasi penyebab defect dalam proses produksi dan Failure Mode and Effect Analysis (FMEA) digunakan untuk melakukan perbaikan. Berdasarkan data produksi bulan April hingga Agustus, total produksi mencapai 249.845-ton dengan jumlah defect sebanyak 3.462 ton. Jenis defect yang dominan meliputi analisis produk belum diketahui (1.863 ton), butiran tidak seragam (1.511 ton), dan warna tidak sesuai spesifikasi (88 ton). Analisis menggunakan peta kontrol (P-chart) menunjukkan tingkat cacat pada bulan Juni melampaui batas kendali atas. Hasil perhitungan RPN didapatkan nilai tertinggi sebesar 336 terdapat pada kegagalan analisis produk belum diketahui akibat perubahan produk dari domestik ke ekspor. Temuan ini memberikan acuan bagi produsen pupuk untuk memperkuat pengawasan proses produksi dan sistem pengendalian mutu guna menekan tingkat defect serta menjaga konsistensi kualitas produk sesuai standar domsetik maupun ekspor.

Kata Kunci: Kualitas, Seven Tools, FMEA

PENDAHULUAN


Perkembangan industri pupuk di Indonesia semakin kompetitif seiring meningkatnya kebutuhan sektor pertanian, baik untuk pasar domestik maupun ekspor. Kondisi ini menuntut setiap perusahaan untuk menjaga kualitas produk agar mampu bersaing dan memenuhi standar mutu yang berlaku (Firmansyah & Nuruddin, 2022). PT. XYZ sebagai salah satu produsen pupuk terlengkap di Indonesia memiliki tanggung jawab besar untuk memastikan setiap produk yang dihasilkan sesuai dengan spesifikasi pasar (Nur'Aini & Andesta, 2024).

Berdasarkan data produksi periode April hingga Agustus 2025, total produksi pupuk mencapai 249.845 ton. Jenis cacat yang ditemukan terdiri atas analisis produk belum diketahui sebanyak 1.863 ton, butiran tidak seragam sebanyak 1.511 ton, dan warna tidak sesuai spesifikasi sebanyak 88 ton. Kondisi ini menunjukkan bahwa meskipun perusahaan memiliki komitmen tinggi terhadap kualitas, masih terdapat defect dalam proses produksi yang perlu dikendalikan (Falah et al., 2023).

Beberapa penelitian menunjukkan bahwa metode Seven Tools dan Failure Mode and Effect Analysis (FMEA) efektif dalam mengidentifikasi dan mengurangi tingkat cacat pada berbagai sektor industri. Penerapan Seven **Tools** membantu menemukan sumber penyebab defect secara sistematis (Safitri & Fahreza, 2023), berfungsi sedangkan **FMEA** untuk menganalisis potensi risiko dari setiap kegagalan dan menentukan prioritas tindakan perbaikan (Susanti, 2023). Hasil penerapan kedua metode ini terbukti dapat menekan jumlah cacat serta meningkatkan efisiensi produksi (Alfiansyah et al., 2024).

Dalam penelitian ini, metode Seven Tools digunakan untuk mengidentifikasi jenis cacat dan faktor utama penyebab terjadinya defect. Selanjutnya, metode FMEA diterapkan untuk menentukan prioritas perbaikan berdasarkan nilai Risk Priority Number (RPN). Kombinasi kedua metode tersebut diharapkan dapat membantu perusahaan meminimalkan tingkat cacat produk dan meningkatkan efektivitas sistem pengendalian kualitas (Wibowo & Rahmadani, 2023).

Penelitian ini bertujuan untuk menganalisis penyebab utama cacat produk pupuk serta menentukan prioritas tindakan perbaikan menggunakan metode *Seven Tools* dan *FMEA* sebagai upaya peningkatan kualitas di PT. XYZ.

Gambar 1. Diagram alir penelitian

Sumber: Pengolahan data oleh peneliti, 2025

Pada Gambar 1 menjelaskan mengenai alur pelaksanaan penelitian yang diawali dengan tahap studi literatur dan studi lapangan untuk memperoleh landasan teori serta pemahaman kondisi aktual di dilanjutkan perusahaan, pengumpulan data berupa jumlah produksi, jumlah defect, serta klasifikasi jenis cacat produk. Data yang terkumpul kemudian diolah menggunakan metode Seven Tools untuk mengidentifikasi pola dan penyebab kecacatan serta metode Failure Mode and Effect (FMEA) untuk mengevaluasi potensi menentukan kegagalan dan prioritas perbaikan berdasarkan nilai Risk Priority Hasil pengolahan data Number (RPN). tersebut menjadi dasar dalam penyusunan kesimpulan dan saran yang ditujukan untuk meminimalkan tingkat cacat, meningkatkan serta kualitas produk, memperkuat efektivitas sistem pengendalian mutu di PT. XYZ.

HASIL DAN PEMBAHASAN

Hasil dari analisis pengumpulan data menggunakan metode *Seven Tools* dan *Failure Mode and Effect (FMEA)* sebagai berikut:

1. Seven Tools

a. Check Sheet

Tabel 1. Check Sheet

Bulan	Total produk (Ton)	Total d	Analisis produk belum diketahui	Butiran tidak seragam	Warna tidak sesuai
April	53975	25	0	25	0
Mei	50455	6	0	6	0
Juni	36165	1517	482	975	60
Juli	52830	928	811	117	0
Agustus	56420	986	570	388	28
Total	249845	3462	1863	1511	88

Sumber: Pengolahan data oleh peneliti, 2025

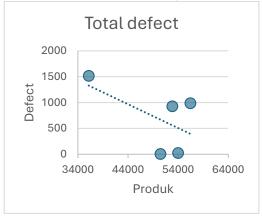
Dari Tabel 1 diketahui bahwa selama produksi bulan April sampai Agustus total produksi pupuk mencapai 249.845-ton dengan jumlah *defect* sebanyak 3.462 ton yang terdiri dari analisis produk belum diketahui 1.863 ton, butiran tidak seragam 1.511 ton, dan warna tidak sesuai 88 ton.

b. Histogram

Gambar 2. Histogram defect produk

Sumber: Pengolahan data oleh peneliti, 2025

Berdasarkan analisis histogram data defect periode April hingga Agustus 2025, dapat dilihat pada gambar 2 menunjukkan bahwa analisis produk belum diketahui dan butiran tidak seragam dengan jumlah tertinggi masing-masing terjadi pada bulan Juli (811 kasus) dan Juni (975 kasus) sedangkan *defect* warna tidak sesuai relatif kecil untuk kontribusinya.



Gambar 3. Scatter Diagram Defect Produk

Sumber: Pengolahan data oleh peneliti, 2025

c. Diagram Pareto

Analisis pada diagram pareto pada gambar 4 menunjukkan bahwa masalah *defect* pada analisis produk belum diketahui (58,81%), dan butiran tidak seragam (43,65%) merupakan penyumbang utama dengan kontribusi kumulatif mencapai 97,46% dari total *defect*, sedangkan *defect* warna tidak sesuai sebesar 2,54%.

Gambar 4. Scatter diagram defect produk Sumber: Pengolahan data oleh peneliti, 2025

d. Scatter diagram

Berdasarkan scatter diagram, tingkat kecacatan tidak selalu berbanding lurus dengan volume produksi. Pada bulan Juni dengan produksi terendah 36.165-ton ditemukan defect tertinggi 1.517 ton, sedangkan April dan Mei dengan produksi tinggi 53.975 ton dan 50.455 ton hanya terdapat 25 dan 6 ton defect. Hal ini menunjukkan bahwa penyebab utama defect bukan jumlah produksi, melainkan kestabilan proses produksi, khususnya di unit granulation loop. Bulan Juli dan Agustus juga menunjukkan tren defect tinggi (928 ton dan 986 ton) meskipun produksi meningkat, sehingga diperlukan pengendalian proses lebih ketat untuk mencegah *defect* pada periode berikutnya.

e. Control Chart

Penelitian ini melakukan pengamatan proses produksi pupuk domestik maupun ekspor dengan menggunakan *control chart (p-chart)* karena data bersifat bervariasi. Perhitungan p-chart diperoleh melalui rumus sebagai berikut:

$$P = \frac{Di}{ni}$$

$$CL = \frac{\Sigma Pi}{\Sigma ni}$$
(1)

$$CL = \frac{\sum Pi}{\sum pi}$$
 (2)

$$UCL = \overline{P} + 3\sqrt{\frac{\overline{P}(1-\overline{P})}{n}}$$

$$UCL = \overline{P} - 3\sqrt{\frac{\overline{P}(1-\overline{P})}{n}}$$
(3)

$$UCL = \overline{P} - 3\sqrt{\frac{\overline{P}(1-\overline{P})}{n}} \tag{4}$$

Keterangan:

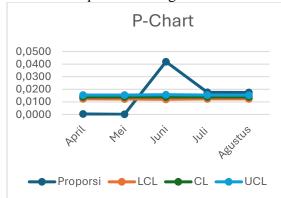
P = Proporsi *defect*

Di = Jumlah defect

ni = Jumlah produksi

 $\bar{P} = \text{Rata-rata } defect$

CL = *Center Line*


UCL = Batas kendali atas

LCL = Batas kendali bawah

Tabel 2. Perhitungan control chart

Bulan	Total produk	Total defect	Analisis produk belum diketahui	Butiran tidak seragam	Warna tidak sesuai	Proporsi	LCL	CL	UCL
April	53975	25	0	25	0	0,0005	0,0123	0,0139	0,0154
Mei	50455	6	0	6	0	0,0001	0,0123	0,0139	0,0154
Juni	36165	1517	482	975	60	0,0419	0,0120	0,0139	0,0157
Juli	52830	928	811	117	0	0,0176	0,0123	0,0139	0,0154
Agustus	56420	986	570	388	28	0,0175	0,0124	0,0139	0,0153
Total	249845	3462	1863	1511	88	0,0139			

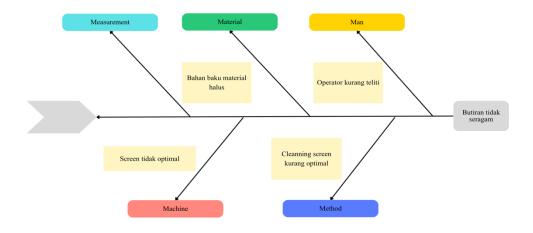
Setelah melakukan perhitungan diatas dilanjutkan dengan tahap pembuatan peta kendali atau *p-chart* sebagai berikut:

Gambar 5. Peta Kendali defect produk

Sumber: Pengolahan data oleh peneliti, 2025

Dari gambar 5 menunjukkan pada bulan April sampai Agustus 2025, terlihat bahwa sebagian besar titik proporsi defect berada dalam batas kendali bawah (LCL) dan batas kendali atas (UCL), kecuali pada bulan Juni, Juli, dan Agustus yang proporsinya melebihi (UCL). Kondisi ini menunjukkan bahwa proses produksi pupuk di PT.XYZ secara umum masih terkendali, namun terdapat periode tertentu di mana proses mengalami penyimpangan signifikan sehingga menghasilkan defect jauh di atas batas normal. Dengan demikian fokus pengendalian kualitas perlu dilakukan pada adanya perbaikan khususnya di bulan Juni yang memiliki proporsi cacat tertinggi, supaya stabilitas produksi dapat dipertahankan dan mutu produk tetap konsisten.

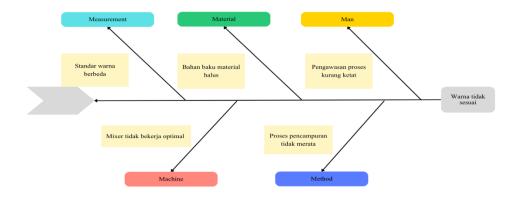
F. Fishbone


Gambar 6. Fishbone analisis produk belum diketahui

Sumber: Pengolahan data oleh peneliti, 2025 Berdasarkan gambar 6. Faktor yang menyebabkan analisis belum diketahui

adalah: 1) Faktor man disebabkan kurangnya

- pelatihan dan sosialisasi terkait perubahan spesifikasi produk ekspor.
- 2) Faktor material dikarenakan komposisi bahan baku yang digunakan berbeda antara produk domestic dengan ekspor


- sehingga berpengaruh terhadap analisis produk.
- 3) Faktor measurement disebabkan perbedaan standar mutu antara produk domestik dan ekspor sehingga analisis dengan acuan lama tidak sesuai.
- 4) Faktor method dikarenakan perubahan *formulasi* pada produk ekspor membuat analisis pada produk belum diketahui.
- 5) Faktor machine dikarenakan proses analisis mengikuti jadwal yang sudah ditetapkan sehingga ketika produk sudah dikirim ke gudang hasil analisis tidak bisa langsung diperoleh karena harus menunggu jadwal yang sudah ditetapkan.

Gambar 7. Fishbone Butiran Produk Tidak Seragam

Berdasarkan gambar 7. Faktor yang menyebabkan butiran tidak seragam adalah:

- 1) Faktor man dikarenakan operator lapangan kurang teliti dalam mengawasi proses granulasi.
- 2) Faktor material disebabkan oleh bahan baku material yang tidak homogen yang dapat mempengaruhi proses pembentukan butiran pupuk.
- 3) Faktor method dikarenakan cleaning screen kurang optimal sehingga ayakan tidak efektif danmenghasilkan variasi pada butiran.
- 4) Faktor machine disebabkan karena screen mengalami kerusakan seperti sobek sehingga menyebabkan butrian yang tidak sesuai tetap lolos.

Gambar 8. Fishbone warna tidak sesuai

Berdasarkan gambar 8. Faktor yang menyebabkan butiran tidak seragam adalah:

- 1) Faktor man dikarenakan pengawasan proses kurang tepat sehingga penyimpangan warna tidak segera terdeteksi.
- Faktor material disebabkan bahan baku material yang tidak homogen mempengaruhi kestabilan warna produk akhir.
- 3) Faktor measurement disebabkan standar warna yang berbeda sehingga hasil Analisa tidak konsisten dengan spesifikasi.

- 4) Faktor method dikarenakan proses pencampuran tidak merata sehingga warna produk tidak seragam.
- 5) Faktor machine dikarenakan mixer tidak bekerja secara optimal sehingga bahan tidak merata.

2. Failure Mode and Effect Analysis (FMEA)

Langkah berikutnya adalah dengan menggunakan metode *FMEA* yaitu dengan mengkalikan nilai *severity X occurance X detection*, berdasarkan hasil dari *observasi* di PT.XYZ sebagai berikut:

Tabel 3. Perhitungan nilai RPN

Failure mode	Effect of failure	Cause of failure	5M	S	0	D	RPN
		Perubahan formulasi produk domestik ke ekspor	Method	7	6	8	336
		Analisa mengikuti jadwal tetap	Machine	7	5	7	245
Analisis belum diketahui	Keterlambatan pengiriman produk; risiko salah spesifikasi ekspor,potensi	Komposisi bahan baku domestik dan ekspor berbeda	Material	7	5	6	210
	claim/hold shipment	Perbedaan standar mutu domestik vs ekspor	Measurement	7	5	6	6 210
		Kurangnya pelatihan & sosialisasi spesifikasi ekspor	Man	6	5	6	180
		Screen sobek/aus	Machine	6	5	6	180
Butiran	Produk off-size; rework/scrap meningkat;	Cleaning screen kurang optimal	Method	6	5	6	180
tidak seragam	ketidakkonsistenan mutu; potensi downtime	Bahan baku tidak <i>homogen</i>	Material	6	4	6	144
Ü		Operator kurang teliti mengawasi granulasi	Man	5	4	6	120
	Ketidaksesuaian	Pencampuran tidak merata	Method	5	3	3	45
Warna tidak	visual; downgrade kualitas/retur;	Standar warna berbeda	Measurement	4	3	4	48
sesuai	potensi komplain pelanggan	Pengawasan proses kurang tepat (warna	Man	4	3	4	48

tak terdeteksi cepat)					
Mixer tidak optimal	Machine	4	3	3	36
Bahan baku tidak <i>homogen</i> memengaruhi	Material	4	2	3	24
warna					

Hasil analisis pada tabel menunjukkan bahwa nilai RPN tertinggi terdapat pada faktor perubahan formulasi produk domestik ke ekspor (336), disusul oleh analisa mengikuti jadwal tetap (245), serta perbedaan komposisi bahan baku dan mutu domestik-ekspor masing-masing bernilai 210. Faktor lain seperti kurangnya pelatihan spesifikasi ekspor dan masalah pada screen serta cleaning screen menghasilkan nilai 180, sedangkan faktor material dan operator terkait butiran tidak seragam berkisar antara 144 hingga 120. Untuk kategori warna tidak sesuai, nilai RPN relatif rendah dengan kisaran 24 hingga 48. Berikut merupakan usulan prioritas perbaikan berdasarkan nilai RPN untuk meminimalkan defect produk di PT.XYZ:

Tabel 4. Usulan perbaikan

No	Usulan Perbaikan	
No.		RPN
1	Membuat SOP khusus untuk transisi formulasi produk domestik ke ekspor	336
2	Menyesuaikan jadwal analisa dengan kondisi aktual produksi, dan meningkatkan frekuensi sampling	245
3	Menyusun standar komposisi baku antara produk domestik dan ekspor, dan melakukan uji homogenitas terhadap bahan baku.	210
4	Membuat dokumen standardisasi mutu, memberikan pelatihan standar mutu ekspor, dan melakukan kalibrasi rutin peralatan instrumentasi.	210
5	Mengadakan pelatihan rutin serta sosialisasi spesifikasi ekspor	180

6	Melakukan preventif pada screen secara berkala	180
7	Menyusun SOP cleaning screen yang lebih detail, dan melengkapi dengan checklist pelaksanaan	180
8	Menerapkan sistem FIFO pada penyimpanan bahan baku, dan memperbaiki sistem penyimpanan.	144
9	Meningkatkan pengawasan oleh supervisor, dan memastikan pemeriksaan visual rutin di area granulasi.	120
10	Mengoptimalkan proses pencampuran bahan, dan memperbarui SOP mixing	45
11	Menetapkan standar acuan warna yang seragam	48
12	Memberikan pelatihan bagi operator pengawasan warna.	48
13	Melakukan perawatan rutin mixer, mengganti komponen aus, serta melakukan inspeksi berkala terhadap performa mixer.	36
14	Mengontrol mutu bahan dari supplier, dan memperbaiki sistem penyimpanan bahan agar homogenitas terjaga.	24

SIMPULAN

Penelitian pengendalian kualitas produk pupuk di PT. XYZ menggunakan metode Seven Tools dan FMEA menunjukkan bahwa jenis cacat dominan yang terjadi adalah analisis produk belum diketahui, butiran tidak seragam, dan warna tidak sesuai spesifikasi. Melalui penerapan Seven Tools (check sheet, histogram, pareto, scatter diagram, control

chart, dan fishbone), diperoleh bahwa penyebab utama *defect* berasal dari faktor *method*, *machine*, dan *man*, terutama pada proses formulasi, pembersihan screen, dan ketelitian operator.

Selanjutnya, analisis **FMEA** menunjukkan nilai RPN tertinggi sebesar 336 pada faktor perubahan formulasi produk domestik ke ekspor, diikuti dengan RPN 245 pada jadwal analisa tetap, dan RPN 210 pada perbedaan komposisi serta mutu domestikdan standar ekspor. Berdasarkan hasil ini, disusun 14 prioritas usulan perbaikan, di antaranya pembuatan SOP transisi formulasi, penyesuaian jadwal analisa, pelatihan rutin, perawatan preventif screen, dan optimalisasi proses mixing.

Secara keseluruhan, kombinasi metode Seven Tools dan FMEA terbukti efektif untuk mengidentifikasi sumber masalah, mengukur tingkat risiko, serta menentukan prioritas tindakan korektif. Penerapan hasil analisis ini diharapkan dapat menurunkan tingkat defect, meningkatkan kestabilan proses produksi, dan memperkuat sistem pengendalian mutu produk pupuk domestik maupun ekspor di PT. XYZ.

Untuk penelitian lanjutan, disarankan dilakukan evaluasi pasca-implementasi terhadap usulan perbaikan guna mengukur penurunan tingkat defect secara kuantitatif. selanjutnya Peneliti juga dapat mengintegrasikan metode Statistical Process Control (SPC) dan Six Sigma untuk memperkuat sistem pengendalian proses secara real-time. Selain itu, analisis faktor eksternal seperti kualitas bahan baku, suhu, kelembapan, dan kestabilan mesin perlu dimasukkan agar hasil penelitian lebih Pengembangan komprehensif. model prediktif berbasis data historis dengan pendekatan machine learning juga dapat dilakukan untuk memprediksi potensi defect sebelum terjadi. Terakhir, penelitian serupa dapat diperluas ke unit produksi lainnya di PT. XYZ agar hasil yang diperoleh memberikan gambaran menyeluruh terhadap sistem mutu dan

efektivitas pengendalian kualitas perusahaan.

DAFTAR PUSTAKA

- Alfiansyah, M., Rahmadani, D., & Suryana, H. (2024). Penerapan metode FMEA untuk mengurangi produk cacat pada proses produksi. Jurnal Teknologi dan Industri, 9(2), 112–120.
- Falah, M. A., Prasetyo, T., & Widodo, R. (2023). Evaluasi risiko proses produksi menggunakan metode FMEA. Jurnal Sains dan Teknologi, 7(2), 98–105.
- Fauzan, L., & Pratama, R. (2023). Penerapan FMEA untuk peningkatan kualitas produk ekspor. Jurnal Teknik Manufaktur Indonesia, 8(2), 121–129.
- Firmansyah, M. J., & Nuruddin, M. (2022).

 Analisis pengendalian kualitas produksi pada PT. XYZ menggunakan metode Seven Tools dan FMEA. SITEKIN: Jurnal Sains, Teknologi dan Industri, 20(1), 231–238.
- Gaspersz, V. (2005). Sistem manajemen kinerja terintegrasi balanced scorecard dengan Six Sigma untuk organisasi bisnis dan pemerintah. Jakarta: Gramedia Pustaka Utama.
- Ginting, R. (2007). Sistem produksi. Yogyakarta: Graha Ilmu.
- Hidayati, N., & Wahyudi, T. (2023). Analisis pengendalian kualitas pada proses produksi menggunakan Seven Tools. Jurnal Sains dan Teknologi Terapan, 5(1), 34–42.
- Ilham, A., Herdiana, D., & Asfarina, N. (2024). Implementasi Seven Tools untuk mengidentifikasi penyebab cacat produk pada industri manufaktur. Jurnal Sistem dan Manufaktur, 10(1), 43–52.
- Ishikawa, K. (1982). Guide to quality control (2nd ed.). Tokyo: Asian Productivity Organization.
- Kurniawan, A., & Setiawan, D. (2022). Strategi peningkatan mutu produk menggunakan metode FMEA dan

- Pareto Chart. Jurnal Teknologi dan Riset Industri, 7(3), 150–158.
- Nur'Aini, V., & Andesta, D. (2024). Analisis pengendalian kualitas produksi papan fiber semen dengan metode Seven Tools dan FMEA pada PT. XYZ. G-Tech: Jurnal Teknologi Terapan, 8(2), 1166–1173.
- Putri, A. D., & Nugroho, T. (2022). Analisis efektivitas sistem pengendalian mutu menggunakan FMEA. Jurnal Teknologi Industri dan Sistem Informasi, 4(2), 65–74.
- Rahman, A., & Hidayat, B. (2024). Optimalisasi kualitas produk menggunakan metode Seven Tools dan FMEA. Jurnal Integrasi Teknik Industri, 9(1), 59–68.
- Rani, A. M. (2016). Menganalisis defect sanding mark unit pick up TMC dengan metode Seven Tools PT. ADM. Integrasi Sistem Industri, 19– 21.
- Rosita, L., & Ramadhan, E. (2024). Penerapan diagram sebab akibat dan FMEA dalam menurunkan produk cacat di industri kimia. Jurnal Teknik Produksi Modern, 10(2), 101–110.
- Safitri, W., & Fahreza, D. M. (2023). The analysis of product defect with Seven Tools and FMEA. Jurnal Pelita Manajemen, 20(1), 1–12.
- Susanti, W. (2023). Penerapan Failure Mode and Effect Analysis (FMEA) untuk menurunkan defect pada proses produksi. Jurnal Ilmiah Teknik Industri, 14(1), 89–97.
- Wijaya, B. S., & Andesta, D. (2021). Minimasi kecacatan pada produk kemasan kedelai menggunakan Six Sigma, FMEA dan Seven Tools di PT. SATP. Jurnal Media Teknik dan Sistem Industri, 5(2), 83–91.
- Wibowo, A., & Rahmadani, D. (2023). Penerapan metode Seven Tools dan FMEA untuk pengendalian kualitas produk manufaktur. Jurnal Teknologi Rekayasa dan Produksi, 6(3), 201–209.

Yuliani, E., & Siregar, F. (2024). Identifikasi penyebab defect dengan metode Seven Tools pada proses produksi pupuk. Jurnal Rekayasa dan Produksi, 12(2), 88–96.