ANALISIS DAMPAK PRODUKSI KELAPA SAWIT DAN HARGA MINYAK NABATI GLOBAL TERHADAP DEFORESTASI DI INDONESIA DENGAN PENDEKATAN VECTOR AUTOREGRESSION (VAR) TAHUN 2016 - 2025
DOI:
https://doi.org/10.31539/q082bq92Keywords:
Deforestasi, Harga CPO Global, Produksi Kelapa Sawit, Vector Autoregression (VAR), Indonesia.Abstract
Penelitian ini bertujuan untuk menganalisis hubungan dinamis jangka pendek dan kontribusi relatif antara produksi kelapa sawit Indonesia, harga minyak kelapa sawit (CPO) global, dan deforestasi di Indonesia selama periode 2016–2025. Metode yang digunakan adalah Vector Autoregression (VAR) untuk mengestimasi interdependensi simultan antar variabel, dilengkapi dengan uji kausalitas Granger, Impulse Response Function (IRF), dan Forecast Error Variance Decomposition (FEVD). Hasil penelitian menunjukkan bahwa: (1) terdapat hubungan kausal jangka pendek yang signifikan dari harga CPO dan produksi sawit terhadap deforestasi, tetapi tidak sebaliknya; (2) estimasi VAR mengungkap bahwa kenaikan harga CPO periode sebelumnya meningkatkan deforestasi saat ini sebesar 45,623 hektar, sementara peningkatan produksi sawit berkontribusi sebesar 5120,4 hektar; (3) deforestasi berpengaruh positif terhadap harga CPO dan produksi, namun efeknya bersifat temporer; (4) hasil FEVD menunjukkan bahwa dalam jangka panjang, sekitar 39,4% variasi deforestasi dijelaskan oleh harga CPO dan produksi, sementara deforestasi sendiri menjelaskan 28,9% variasi harga CPO dan 39,4% variasi produksi. Implikasi kebijakan dari temuan ini menekankan pentingnya pendekatan terintegrasi yang menggabungkan pengendalian harga komoditas, intensifikasi produksi berkelanjutan, dan penguatan tata kelola lahan untuk menekan deforestasi tanpa mengorbankan stabilitas ekonomi sektor sawit.
References
Agrawal, A., et al. (2024). Polycentric governance and resilience in environmental systems. World Development, 176, 106–119. https://doi.org/10.1016/j.worlddev.2024.106119
Arifin, B. (2023). Rent-seeking behavior and land use changes in Indonesian palm oil expansion. Journal of Environmental Economics and Policy, 12(1), 89–104. https://doi.org/10.1080/21606544.2023.2184567
Austin, K. G., Schwantes, A., Gu, Y., & Kasibhatla, P. S. (2019). What Causes Deforestation in Indonesia? Environmental Research Letters, 14(2), 024007. https://doi.org/10.1088/1748-9326/aaf6db
Curtis, P. G., et al. (2018). Classifying drivers of global forest loss. Science. Science, 361(6407), 1108–1111. https://doi.org/10.1126/science.aau3445
Curtis, P.G., et al. (2023). Threshold effects in commodity price-deforestation relationships: Evidence from tropical agricultural frontiers. Environmental Research Letters, 18(4), 045012. https://doi.org/10.1088/1748-9326/acb876
FAO. (2020). Global Forest Resources Assessment 2020. Rome: FAO.
Gaveau, D.L.A., Locatelli, B., Salim, M.A., et al. (2022). Slowing deforestation in Indonesia follows declining oil palm expansion and lower oil prices. Environmental Research Letters, 17(1). https://doi.org/10.1088/1748-9326/ac6f09
Global Forest Watch. (2024). World Lost 4.1 Million Hectares of Tropical Forest in 2023. World Lost 4.1 Million Hectares of Tropical Forest in 2023. Washington, DC: WRI.
Greenbury, A. (2024). Productivity-intensification trade-offs in sustainable palm oil production. Nature Sustainability, 7, 245–258. https://doi.org/10.1038/s41893-024-01319-7
Heilmayr, R., et al. (2024). Spatial spillovers of commodity price shocks on deforestation patterns. Proceedings of the National Academy of Sciences, 121(5), e2303481121. https://doi.org/10.1073/pnas.2303481121
IPCC (Intergovernmental Panel on Climate Change). (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC. https://doi.org/10.59327/IPCC/AR6-9789291691647
Kartodihardjo, H. (2023). Institutional capacity mismatch and forest governance outcomes in Indonesia’s palm oil sector. Forest Policy and Economics, 156, 103–115. https://doi.org/10.1016/j.forpol.2023.103115
Lambin, E. F. (2024). Amplification mechanisms in global commodity price transmission to local deforestation. Global Environmental Change, 85, 102–118. https://doi.org/10.1016/j.gloenvcha.2024.102118
Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F., & Hansen, M. C. (2023). Decoupling of Palm Oil Expansion from Deforestation in Indonesia: Evidence from Remote Sensing and Policy Analysis. Environmental Research Letters, 18(5), 054025. https://doi.org/10.1088/1748-9326/acd5f2
Meyfroidt, P., et al. (2023). Telecoupled land systems: Conceptual framework and empirical applications. Land Use Policy, 131, 106–121. https://doi.org/10.1016/j.landusepol.2023.106121
Nobre, C. A., Lovejoy, T. E., & Lapola, D. M. (2024). The Amazon Tipping Point: Implications for Global Climate and Biodiversity. Nature Climate Change, 14(2), 123–130. https://doi.org/10.1038/s41558-023-01910-2
Pendrill, F., et al. (2022). Disentangling the numbers behind agriculture-driven tropical deforestation. Nature Sustainability, 5, 752–764. https://doi.org/10.1038/s41893-022-00886-9
Seymour, F., et al. (2024). Complex adaptive systems and forest transitions: Theory and applications. Annual Review of Environment and Resources, 49, 1–28. https://doi.org/10.1146/annurev-environ-012322-082456
Vijay, V., et al. (2024). The effectiveness of sustainability standards in reducing tropical deforestation. Nature Communications, 15, 1589. https://doi.org/10.1038/s41467-024-47744-0
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Lucky Lukman, Rosmegawati Rosmegawati, Rozikin Rozikin, Mohammad Jon Tasrif, Arni Kurniati

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

